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SUMMARY 
A PC-based system for modelling of convection in enclosures on the basis of the Navier-Stokes equations is 
described and a number of test results are given. New examples of mixed convection in a square chamber 
and thermal convection in ordinary and porous (isotropic and anisotropic) vertical layers are presented 
which may be of interest in civil and building engineering. 
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1. INTRODUCTION 

Since the first papers on modelling of convection in enclosures on the basis of the Navier-Stokes 
equations, most of the main thermal convection problems have been solved, i.e. vertical layers 
with side heating,' enclosures with bottom heating and inclined,2 unsteady problems with heat 
~ u p p l y , ~  thermal and thermoconcentrational convection in horizontal layers with side heating4. 
and the problem of transition from laminar to turbulent convection in vertical layers.6 Similar 
problems have been solved also for convection in porous layers7,' (see additional references e.g. in 
Reference 9). Different kinds of packages for solving CFD problems on the basis of the 
Navier-Stokes equations with the help of finite difference and finite element methods are now 
available. lo-' However, for a number of civil and building engineering problems it is possible to 
produce simpler and more user-friendly software for powerful personal computers which will be 
an additional tool for engineering handbooks (see e.g. Reference 13). This paper contains 
a description of one version of such a system: statement of problem, mathematical model, 
structure of system, tests and engineering results. 

2. MATHEMATICAL MODEL 

2. I .  Ordinary media 

For ordinary media the presented system is based on the two-dimensional unsteady 
Navier-Stokes equations for thermoconcentrational (double-diffusion) convection. The angle of 
inclination of the body force and the temporal behaviour (rotation, vibration) are taken into 
account. For the modelling of the thermoconcentrational convection, the Navier-Stokes equa- 
tions with the Boussinesq approximation in a flat rectangular region of length L and height H are 
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used. The origin of the Cartesian system of co-ordinates (x, y) is the bottom left corner of the 
region. The governing equations are 

au au au 1 a p  -+ U-+ u-= -- -+- AU + g x ( t )  
at ax a y  p a x  
av  av av 
at  ax a y  p a y  - +u-+v-=  --- a p + p A v + g y ( t )  ac p ,  

au av  
-+-=0, ax ay  

aT aT aT 
-+u-+v-=ctAT, at  ax  ay 
ac ac ac 
at ax ay -++-++-=DAC, 

(3) 

(4) 

where t is the time, (u, v )  is the velocity vector, p is the pressure, T is the temperature, C is the 
impurity concentration, p is the dynamic viscosity, p is the density, a is the thermal diffusivity and 
D is the diffusivity. 

The fluid is initially motionless (velocity equal to zero) and the temperature and impurity 
concentration are either uniform or linearly distributed in any direction. 

Different kinds of boundary conditions may be used. The normal component of velocity is 
given on every boundary. For the tangential component of velocity, us, the condition may be 
either of the first kind, us = U o  (rigid wall), or of the second kind, 

where D is the surface tension (free surface). For the temperature and concentration, boundary 
conditions of the first, second or third kind may be used. 

The density of the binary liquid and the surface tension are given as linear functions of 
concentration and temperature: 

The components of the microacceleration vector, gx( t )  and gy(t) ,  can be written in the form 

gAt )=gro  + [&+st sin (a1 t ) l  sin(Q2t+ cpo), 

g y w  = gyo + cs, + 91 sin (a, t ) I  cos(Q2t + cpo), 

where gxo and gyo are the components of the constant microacceleration, gs and g1 are constant 
and variable components respectively due to rotation in the case where it exists, R,  and R2 are the 
frequencies of vibration and rotation respectively and 'po is the initial angle of inclination. This 
type of representation includes the principal cases of space and temporal variation of the 
microacceleration vector. 
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These equations and boundary conditions may be non-dimensionalized with respect to any 
scales for time, length, velocity, etc. The principal non-dimensional parameters governing the 
behaviour of the system are: LIH,  the aspect ratio; Pr = p / p a ,  the Prandtl number; Sc = p / p D ,  the 
Schmidt number; 

the thermal Grashof numbers; 

the concentrational Grashof numbers; Re= CJ,H/(p/p), the Reynolds number; 
M a  = ( d o / d T ) A T H / p a ,  the thermal Marangoni number; Ma, =(ao/aC) A C  H / p D ,  the concentra- 
tional Marangoni number. 

2.2. Porous media 

Darcy’s law and the Boussinesq approximation for isotropic and anisotropic media are used 
for convection in permeable porous media (thermal insulation). In this case special definitions of 
the Rayleigh number Ra* = g LkyAT/va*  and the anisotropic coefficient K J K ,  are also used (a* 
is the thermal diffusivity of anisotropic media). 

au a U  
-+-=0, 
a x  ay  

aT aT aT d 2 T  d 2 T  
( p c )  - + ( p c p ) f  at (9) 

where cp is the specific heat capacity and R is the thermal conductivity; index ‘m’ corresponds to 
the fluid-saturated porous matrix and index ‘f’ to the fluid. 

2.3. Numerical method 

Equations (1)-(5) for ordinary media and (6)-(9) for porous media are solved by the finite 
difference method. The non-uniform staggered MAC mesh is used for space approximation. An 
explicit variant of the projection method proposed by Chorin and Temam14 is applied for time 
approximation of the momentum equations (1) and (2). The temperature and concentration 
transport equations (4), ( 5 )  and (9) are solved by the DuFort-Frankel leapfrog method. The 
Poisson equation for pressure is obtained from (l), (2) or (6), (7). This equation with Neumann 
boundary conditions is solved iteratively by the SOR method with the optimum relaxation factor 
determined experimentally. The convective terms in the transport equations are approximated by 
central or ‘upwind’ differences. The finite difference approximations of the boundary conditions 
are of second-order accuracy. 
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The implicit scheme for ordinary media in the vorticity-streamfunction formulation" is also 
used. The alternating direction implicit (ADI) method is employed for the vorticity, temperature 
and concentration equations. The iterative AD1 method or Fourier series method is employed for 
the streamfunction equation. The implicit scheme allows us to increase the time step of calcu- 
lations and to accelerate the problem solving. 

3. STRUCTURE OF PC-BASED SYSTEM 

The described system is planned as a flexible and convenient software tool for solving different 
applications on the basis of the unsteady Navier-Stokes equations. Special attention is paid to 
creating a convenient user interface and to developing possibilities for numerical results 
visualization. 

The common structure of the system is shown in Figure 1. The system supports three main 
groups of functions: problem statement, input control parameters (preprocessor); solving of the 
problem (solver); additional results processing, data visualization, conversion of data to formats 
of other software packages for analysis and plotter drawing (postprocessor). 

All parts of the system work under the control of the common graphical shell in the united user 
medium. The software shell is based on the use of pull-down menus, hot keys, multiwindow 
graphical interfacing and mouse control. There are detailed help panels explaining the possible 
input selections and defaults to ease user input requirements. 

The system is based on two software parts: a control part and an application part. The control 
part supports the software shell, common parameters input, package control, common functions, 
additional results processing and visualization. The application part contains problem para- 
meters input, solver and data access procedures for additional results processing and visualiz- 
ation. Such a structure of the system allows one to focus on a required application. The 
applications are restricted by the prescribed shape of the region. 

Control progfam 
Menu-driven graphical shell 

I 

Preprocessor Solver 

Problem statement Grid Parameters of data 
generation processing and control 

1 I 
Geometry Equations, 

properties - 
Figure 1. Common structure of PC-based system for modelling of convection on the basis of the Navier-Stokes 

equations 
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The preprocessor has the following important possibilities: 

(i) formulation of the physical problem, including size of region, number of equations, initial 
and boundary conditions, physical properties of the fluid; it is also possible to impose the 
time dependence of the body force value and direction 

(ii) assigning parameters of the finite difference solver, including number of grid nodes along 
each direction, approximation method for the convective members of the equations, 
method for time step calculation, scales of physical quantities, time of solving 

(iii) grid generation 
(iv) task control and several service functions, including loading and saving task status, 

parameters input from a file, system set-up, parameters check. 

While the problem is solving, the following possibilities of concurrent visualization may be 
used: 

(i) displaying the current values at some points and in a subregion 
(ii) plotting the flow history at some points and in a subregion 
(iii) displaying the isolines of temperature, impurity concentration or streamfunction. 

The extended visualization of the postprocessor has additional tools for results presentation: 

(i) drawing the sections of the fields in any direction 
(ii) visualization of the flow structure by 'particle' tracks. 

The described system works on an IBM-compatible PC with 640 kbyte RAM, mathematical 
coprocessor and EGA/VGA monitor. DOS 3.0 or higher is required. The numerical grid may 
contain up to 10000 nodes. 

4. TEST EXAMPLES 

A number of test examples described in Reference 15 have been solved: the de Vahl Davis test,I6 
the GAMM testI7 and tests of our previous calculations mentioned above.'-8* l o  1.e. ' double 
diffusion, Marangoni convection, etc. 

The first problem is natural convection of air (Pr=0.71) in a square enclosure with isothermal 
side boundaries and insulated horizontal walls. Our solution of this problem was obtained at 
a Rayleigh number Ra = Gr x Pr  = lo5 using a 21 x 21 uniform mesh. The maximum value of the 
stream function is $,,, = 9.907 for the explicit scheme and $,,, = 8.705 for the implicit scheme. 
The test result of Reference 16 is $,,,=9.612, the discrepancy with our results therefore being 
about 3% and 9% respectively. The time taken on an IBM PC/387 for the modelling of the 
described problem (computation up to a non-dimensional physical time of 0.1) is approximately 
100 for the explicit scheme and 25 for the implicit scheme. 

The second problem is convection in a horizontal layer of a melt with side heating. The aspect 
ratio is 4: 1 ,  Pr=O and the mesh is 101 x 26 at two Grashof numbers, G r = 2  x lo4 and 4 x lo4, in 
accordance with the GAMM test.17 The corresponding values of t+bmax are 0.4066 (test result 
$,,,=0.4155) and 0.4146 (test result t,hmax =0.4167), the discrepancy being 2% and 0.5% respect- 
ively. The flow structures for these cases are shown in Figure 2 by streamfunction isolines. 

Figure 3 shows an example of our solution of another classical problem (the Rayleigh-Benard 
problem) for convection in a horizontal layer with bottom heating (lateral boundaries are 
adiabatic). The aspect ratio is 6: 1, the mesh 60 x 11, Pr=  1 and Ra= lo4, which corresponds to 
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Figure 2. Streamfunction isolines for convection in a melt horizontal layer with side heating: (a) C r = 2  x lo4; 
(b) G r = 4  x lo4 

Figure 3. (a) Isotherms and (b) stream function isolines for Rayleigh-Bernard convection in a horizontal layer with 
bottom heating 

a weak supercritical condition. The roll structure of the flat motion and the structure of the 
temperature field are in a good agreement with the data of other authors (see e.g. Reference 5).  

Figures 4-6 show the results of a more difficult problem. In this case the layer is like the one in 
the previous example. The initial and boundary values for velocity and temperature correspond 
to the steady state solution shown in Figure 3. The layer begins to slowly rotate with a non- 
dimensional angular velocity RL2/v = 20. All the above-mentioned convective regimes (side 
heating, bottom and top heating) are changed during the slow rotation. The time dependence of 
the temperature at a point inside the melt (x= 1, y = 0 5 )  is shown in Figure 4. One can see 
transition and quasi-steady regular oscillatory regimes. Streamfunction isolines and isotherms at 
four instantaneous positions of the layer ((a) bottom, (b) right-side, (c) top and (d) left-side heating) 
are shown in Figures 5 and 6 respectively. They demonstrate one of the strong effects of slow 
rotation, namely homogeneity of the temperature field along the layer owing to mixing with 
different kinds of convection interaction. 

This effect is similar to mass transfer in liquid phase epitaxy (LPE) growth problems and has 
been studied in Reference 10. The possibility of reducing inhomogeneities of a thin film on 
a substrate in the LPE technique by slow rotation is one alternative to microgravity (mechanical) 
control (see Reference 18 for more detailed explanations). Slow rotation is also very popular in life 
science experiments (demonstrations) for imitation microgravity conditions. 
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Figure 4. Time dependence of the temperature at a point (x= 1 ,  y=O.5) inside the slowly rotated layer, showing the 

settlement of regular oscillations 

Figure 5. Streamfunction isolines in the slowly rotated layer 

The system models a lot of similar situations (with double diffusion, for different types of 
disturbances, with interaction of gravitational and Marangoni convection,"' for different kinds 
of boundary conditions) which can be useful for analysis of material science experiments. 
Therefore this system can be considered as a powerful 'knowledge base'. 
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Figure 6. Isotherms in the slowly rotated layer 

5. EXAMPLES OF CIVIL AND BUILDING ENGINEERING PROBLEMS 

Figure 7 shows the calculation results for a thermal insulation problem (ordinary medium, air, 
Ra = 5 x lo4, Pr = 0.71 (a); permeable porous layer (Ra* = 2.5) for isotropic (b) and anisotropic (c, 
K , / K , =  1500) media). A 21 x 51 mesh is used for this problem. The heat transfer across the 
elements of thermal insulation can be analysed with the help of this system. Thermal convection 
in the air in an enclosure (Figure 7(a)) is the reason for heat loss from the elements of buildings. It 
is possible with the help of isotropic permeable porous insulation to reduce the heat loss across 
the layer (Figure 7(b)) so that the isotherms are close to the conductivity regime and very slow 
convection exists inside the layer. However, if the permeability is not uniform (the layer is more 
permeable along and less permeable across), the convection will be more intensive, as shown in 
Figure 7(c). 

Unsteady mixed thermal gravitational and forced convection in a square with input of hot and 
cold gas and output of mixture as shown in Figure 8 (Re = 4  x lo3, Ra = 2 x lo7, Pr = 1) has been 
investigated. A 4 0 x 4 0  mesh is used for this problem. Boundary conditions for velocity and 
temperature of the input gas (Figure 8) are of the first kind (prescribed ui and Ti). Conditions for 
the output gas are of the second kind (au,/an = aT,/an = 0, where n is the normal to the boundary). 

6. CONCLUSIONS 

The described PC-based system includes repeated and newly tested convective problems in 
enclosures. The system may be used in addition to engineering handbooks in a number of 
applications, e.g. material and fluid sciences, thermal insulation and other thermal problems for 
ordinary and porous media in enclosures for power, civil and building engineering. The system 
includes a user guide and may be obtained from the authors. 
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I I 

Figure 7. Isotherms (left) and streamfunction isolines (right) for convection in a vertical layer with side heating for 
(a) ordinary (b) isotropic (c) anisotropic media 
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Figure 8. Problem statement for unsteady mixed convection in a square 
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